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ABSTRACT

Thermal-conductivity measurements have been carried out over the tempera-
ture range 300° to 475° K with an eight-cell hot-wire thermal-conductivity ap-
paratus. The thermal conductivities of the deuterated gases are greater than
those of their unsubstituted counterparts at the higher temperatures (presum-
ably because of their higher heat capacities). Conductivities of the equimolar
mixtures lie about midway between the conductivities of the pure components.
Results are analyzed to test a recent hypothesis that a resonant exchange of
rotational quanta causes the thermal conductivity of a polar gas to seem anom-
alously low in relation to its viscosity. These results are consistent with
this hypothesis, the only qualification being that near-resonant exchange is
also important. )
| —
INTRODUCTION o 2 :

The thermal conductivities of highly polar gases such as hydrogen fluoride,
water, and ammonia appear to be anomalously low in relation to their viscosities.
Mason and Monchickl nave suggested that this effect is largely a result of a
resonant exchange of rotational energy, presumed probable on grazing self-
collisions of polar molecules. Hence, a grazing collision with exchange is equi-
valent to a head-on collision without exchange insofar as the transport of the

rotational quantum is concerned. Baker and Brokaw2 have recently measured the

thermal conductivities of gaseous HZO and DZO’ as well as their equimolar mixture,




in an effort to test experimentally the theory of Mason and Monchick. As has
been previously pointed out,2 a polar gas and its deuterated counterpart should

be a good test of the theory because the substitution of a deuterium atom for a
hydrogen atom increases the moment of inertia by epproximately a factor of two

but changes the mass only slightly. Since the resonant correction depends in-
versely on the 3/2 power of the moment of inertia, the resonant correction for

the deuterated gas will be approximately one third that of the ordinary gas.

The following conclusions were reached on the basis of the work with the
HZO_DZO system:2

(1) The data of the pure compounds seem to confirm Mason and Monchick's pos-
tulate regarding the importance of resonant transfer or rotational quanta.

(2) On the other hand, the data on the mixtures suggest that a resonant ex-
change of rotational gquanta is not an important factor in determining the thermal
conductivity of water vapor.

(3) It was suggested, tentatively, that exchange of rotational energy or graz-
ing collisions is important but is of a classical nature.

These conclusions were not definitive because of inadequacies both in the
theory for asymmetric top molcules (such as water) and in the theory for poly-
atomic gas mixtures. In addition, it has been pointed outs’4 that the HZO—DZO
system was in fact an eguilibrium ternary mixture of HZO’ HDO, and D,0. One way
to overcome the first shortcoming is to study gas pairs for which the theory does
exist; namely, linear dipoles such HCl and DCl, and symmetric tops, such as NH

3

and NDS’ As for the second point, the work by Mason and Monchick on the thermal

conductivity of polyatomic and polar gasesl has recently been extended to include

gas m_ixtures.5

The thermal-conductivity equations obtained by Mason and Monchick are based



on the formal kinetic theory of Wang-Chang and Uhlenbeck6 and Taxman.7

However,
Waldman8 has recently pointed out that certain simplifying assumptions made in
both these theories are not valid; therefore, neither of these theories is actu-
ally as rigorous as it had previously been considered to be. Consequently, the
equations of Mason and Monchick must also be regarded as less rigorous. Nonethe-
less, their formulas for calculating the thermal conductivity of polyatomic and
polar gases appear to be the best presently available and will be used in the
data analysis of this work.

The experiments reported in this paper were underteken to determine whether
the tentative conclusions reached with HZO-Dzo are correct. Conductivities of
NH

ND,, HC1l, DC1, CH4, CD4 and equimolar mixtures of HC1l-DCl and CH4-CD4 were

3’ 3’
measured in the temperature range 300° to 475° K. The conductivities of NlSH5
and the equimolar mixture of NlSH5 and NH5 were measured at 300.0° and 424.4° K,

while the conductivity of the equimolar NH —ND3 mixture was measured at 300.0° K

3
only.
EXPERIMENTAL
Apparatus and Procedure

The hot-wire thermal-conductivity apparatus used for these conductivity meas-
urements consists of four pairs of carefully matched platinum-iridium filaments
mounted in a stainless-steel block. The cells are connected as elements of a con-
stant current Wheatstone bridge. When an instrument such as this is used as a
thermal-conductivity detector in analytical work, as is often the case, a bridge
current of 400 to 500 milliamperes is normally used., Under these conditions, the
difference between the temperature of the hot wires and the temperature of the

block, AT, is 300° to 400° C. For this work, however, a bridge current of only

100 milliamperes was used, which produces a AT ranging from 2° to 25° C, depend-



ing on the thermal conductivity of the gas in the cells.

The voltage unbalance produced when gases of unequal thermal conductivity
were introduced into the test and reference cells was measured on a sensitive
potentiometer., The instrument responds to the reciprocal of the thermal conduc-
tivity,

E—Eref=b(%i_7_l—')’ (1)
ref
where E 1is the voltage unbalance with a gas of unknown conductivity in the four

test cells and a reference gas in the other four cells; E is the voltage with

ref

the reference gas in all eight cells; A and %ref are the thermal conductivities
of the unknown and reference gases, respectively; and b is a constant character-
istic of the apparatus (it may be slightly temperature dependent). For this work,
nitrogen was used as the reference gas, and helium and argon were used as the cali-
brating gases.

A1l the thermal-conductivity méasurements were made at atmospheric pressure
(750 torr). The desired temperatures were maintained by a large oil bath that
could be contreclled to within 10.020 C. Temperature measurements were made with
a platinum resistance thermometer. The gas handling system was conventional in
all respects. BSince all the gases used in these experiments are readily condensed
by liquid nitrogen, transfer of a gas from a storage vessel to the test cells and
back to the storage vessel was readily achieved by strategically placed cold fin-
gers,

As previously mentioned, nitrogen was generally used as the reference gas;
however, all the isotopically substituted gases as well as the equimolar mixtures
were measured against their nonsubstituted counterparts, that is, ND3 against NHg,

DCLl against HC1, etc. Thus, these small electromotive forces were measured with



enhanced precision.

Voltages relative to argon are recorded in Table I. The measurements for
each system were not made at identical temperatures, since measurements for a
given System were made over the entire temperature range before changing to an-
other gas pair. The experimental voltages were reproducible to better than
$0.005 millivolt. Because helium and argon are monatomic gases, it is possible
to compute conductivity from viscosity through a rigorous, experimentally veri-
fied, theoretical relation, to less than a few parts per thousand. Thus, ther-
mal conductivities for the calibrating gases were assigned after considering both
experimental viscosity and thermal-conductivity data. The details of this method
have been fully described previously.2 The conductivities selected for calibra-
tion are given in Table II.

Experimental Results

The thermal conductivities derived from Tables I and IT by means of Eq. (1)
are presented in Table III., The table is again subdivided into three parts since
the measurements for the different systems were not made at identical temperatures.
Although the primary purpose of this work is to measure accurately the relative
differences between the ordinary gases used and their isotopically substituted
counterparts, the absolute values obtained are generally in agreement with the
literature. This is illustrated in Fig. 1, where the present data on ammonia are
compared with the recent measurements of Richter and Sage.9 The agreement seems
satisfactory.

ANATYSIS AND DISCUSSION
The expression that Mason and Monchickl derived for the thermal conductivity

of a polyatomic gas may be written as follows:
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where N 1is thermal conductivity, n 1s viscosity, M is molecular weight, p is
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density, D,

int is the average coefficient for the diffusion of internal energy,

Cv and Ci 4 are the translational and the internal contributions to the
trans n

molar heat capacity, Zk is the number of collisions for relaxation of the kth
internal mode, and Ck is the heat capacity associated with that mode. In small
rigid polyatomic molecules, the only collision numbers small enough to affect ther-
mal conductivity significantly are those associated with rotational relaxation.

For nonpolar gases, Di

nt is commonly assumed to be equal to the self-diffusion

coefficient, Dll' For polar gases, however, Mason and Monchickl suggest that

D
11 (3)

D. = —
int (1 + 5)’

where & is a correction term calculated from the theory of resonant collisions.
Mason and Monchickl have developed expressions from which the resonant correction
for linear dipoles and symmetric tops can be computed. The expression used in

the analysis of the linear dipoles HC1l and DCl is as follows:

2
1/2
5= (a,) [= 22 ) . (4)
4" | 16 o kT (Cint/R)IS/z

Here (a4), taken to be 0.44, is the mean value of a dimensionless quantity involv-
ing the rotational quantum numbers, K is the dipole moment, h is Planck's con-

stant, %G is the kinetic-theory diameter characteristic of diffusion

(0- = U[Q(l’ l)*]l/z

D in the notation of Ref. 10), k 1is the Boltzmann constant,




m 1s the molecular mass, R 1is the universal gas constant, and I 1is the molec-
ular moment of inertia. For near-spherical top dipoles such as NH5 and NDS’ the
expression for ® is somewhat more complicated than Eq. (4), as a result of the
presence of three moments of inertia, two of which are equal. This relation is

| -7/2

1/2

2
5 53 uh R m 5
5 =2 (2,) (S ) 5. (5)
¢ %/ (T 5xT ) © i )
6 ( % int I,(Ip) /7 A

where IA is the moment of inertia about the dipole axis and IB = IC are the
other two moments. For spherical top ﬁolecules such as CH4 and CD4, the three
moments of inertia are equal. It is easily seen that when IA = IB = IC’ Eq. (5)
differs from Eq. (4) only by the factor 5w/1e.

The method of analysis of the pure gas data is quite different from the pro-
cedure used with the equimolar mixtures. Thus, it seems desirable to discuss all
the pure gas results first and then follow this with é;; the mixture results,
rather than to discuss both pure gas and mixture results for each gas pair before
proceeding to the next system.

Pure Gases

The experimental data on all the pure gases were analyzed as follows: The
necessary resonant corrections were calculated from Egs. (4) and (5) and the re-
sults were used fo compute D, ‘

int ot

then calculated from Eq. (2) after A had been replaced by the experimentally de-

from Eq. (3). The collision number Zr was
termined thermal conductivity. The ratio of the collision number of the deuter-
ated gas to that of its undeuterated counterpart was then compared with a theoret-

ical value based on the results of Sather and Dahlerll’12

Z‘l (&I/moi)

rot o 2
(l + 4I/mo )

for a rough sphere:

: (6)



Here m and I are the same as in Eq. (4), while Oﬁ is the viscosity colli-
sion diameter (Gﬂ = 0[9(2’2)*]1/2 in the notation of Ref. 10) and o is the
diemeter of the rough sphere core. The rough sphere model was chosen because the
experimental results of O'Neal and Brokaw for a variety of near-spherical mole-
cules (including methane and even ethane) suggest that this model is a resonable
one for substances that do not differ markedly from spherical symmetry.

Some temperature-independent properties necessary for the data analysis are
listed in Table IV, Certain temperature-dependent quantities that are also needed
for the data analysis are shown separately for each gas pair in Tables V to VII.
The viscosity values for ammonia were tesken from the best curve through the most
and NTOH, were calcu-

3 3

lated from the NH3 viscosities., Since there were no dsta available that compared

recent viscosity datsa available.;3'16 Viscosities of ND

the viscosities of the isotopic pairs, the viscosity collision cross sections for
all three gases were assumed to be the same. Similarly, the viscosities for HC1
listed in Table VI were taken from the best curve through the data available in

the literature,l7'20

and the viscosity for DCl computed from these data, again
with the assumption that the viscosity collision cross sections are equal. The
viscosities for CH, were obtained by interpolation from the data of Dé Rocco and
Halforél.zl Viscosities of CD4 were computed assuming the viscosity collision
cross section of CH4 is 2.2 percent larger than that of CD4. This was deduced
from the viscosity measurements of van Itter'beek22 and suggests that the polar-
izability of CH, is somewhat larger than that of CD,. A similar effect has been
observed and discussed for the Hz - D2 system.23
The heat capacity data given in Tables V to VII were calculated from spectro-

S

scopic constants24 by a computer program described by McBride, et al.2 The heat

capacity wvalues for N15H3 at 300.0° and 424.2° K were ohtained from the calculated



NH5 and ND3 heat capacities by interpolation on the basis of the square root of

the reduced mass. As one would expect, the heat capacities for le

slightly different from those for NHS; the NlSH3 heat capacity is larger by Just

H3 are only

over one part per thousand.

The dimensionless quantity lel/n that involves the self-diffusion coef-
ficient was computed as (6/5)(A*).lo The quantity (A¥) is a ratio of collision
integrals (essentially the ratio of the viscosity and diffusion cross sections)
and is quite insensitive to temperature and the details of the intermolecular
force law, at least for spherically symmetric potentials. Since there is no ex-
perimental information on the self-diffusion of ammonia and only room temperature
data for hydrogen chloride, (A*) was taken from calculations for a modified (angle
independent) Stockmayer'potential.26 The values of (A¥) used for methane were
taken from calculations based on an exponential-6 poten‘bial27 (a0 = 14, e/k = 152.8).
The determination of (A*) is the only place in the analysis where it is necessary
to make any assumption about the intermolecular force law.

All the expressions, molecular properties, temperature-dependent quantities,
and procedures necessary for the data analysis have now been presented. The first
gas pair that will be discussed is CH4-CD4. The analysis is the simplest for this
system since these molecules are spherical tops with no dipole moments; therefore,
the resonant correction is zero [see Eq. (5)]. Thus pDint/n is taken to be
lel/n and is computed as (6/5)(A*) as before. By substituting the experimen-
tally determined thermal conductivity into Eq. (2), the collision number Zrot
is easily calculated for both OH4 and OD4.

Collision numbers for rotational relaxation calculated by this procedure,

as well as the ratios of 2 to 7

oD are presented in Table V. The ratio ob-

b
4 CH,

tained by substituting the appropriste quantities from Table IV into Eq. (6)
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is Z Z = 0.6502.
CD4// CH,

The room temperature collision number for methane is considerably lower than
the value of 9 collisions obtained by the temperature recovery factor method,lz

which also utilizes Eq. (2). The value of Zro decreases with increasing tem-

t
perature as did the Zrot for HZO.2 It is interesting to note that collision num-
bérs for SOZ’ recently calculated from experimental thermal-conductivity data28
by means of Eq. (2), increase with increasing temperature. However, too much sig-
nificance should not be placed on these temperature trends since the collision
number 1s extremely sensitive to the absolute value of the thermal conductivity.
The agreement between the ratios of the experimentally determined collision
numbers and the theoretical ratio obtained from Eq. (8) is qﬁite good at the high-
er temperatures, whereas the experimental ratios are somewhat higher than the theo-
retical value at the lower temperatures. It should be emphasized that the ratio

of Z numbers is extremely sensitive to the ratio of the viscosity cross sections.

For example, if one assumes that these cross sections are equal (rather than
o

%cH,

comes about unity.

2
//%CD = 1,022 as deduced from viscosity datazz) the ratio of Z numbers be-
4

In summary, for nonpolar spherical tops, rotational collision numbers obtained
from experimental thermal conductivity data by means of Eq. (2) are in reasonable
agreement with current theory for rough spheres, a conclusion previously reached
1 12
by O'Neal and Brokaw.

As far as polar molecules are concerned, the analysis is simplest for linear
dipoles such as HC1l and DCl. Rotational relaxation collision numbers obtained
from the experimental conductivities and resonant corrections calculated from

Eq. (4) are given in Table VI. The room temperature value for Zro is in good

t

agreement with the Z__, ~ 7 collisions, recently obtained by Breazeale and

v
L
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Kneser29 at 0° C, using the acoustic absorption technique. On the other hand,

if collision numbers are celculated with the assumption that the resonant correc-
tion is zero, values are obtained (1.2 - 1.3 collisions) that are abnormally low
when compared with this experimental wvalue. That a collision number of even 6
or 7 for HCl is surprisingly low can readily be seen by comparing it with the

Z for N.. The moment of inertia of N2 is a little more than five times

rot 2

greater than the moment of inertia for HCl, whereas their masses are gbout the

same. Thus, on the basis of Eq. (6), one would expect Zrot to be about four
HC1

s Which is about 5.5 collisions.®0 Breazeale and Kneser
Nz
have attributed the low Z for HC1l to its large dipole moment, and it is prob-
rot s

times greater than Zrot
able that the enhanced efficiency with which HC1l molecules relax rotational energy
is due to the long-range dipole-dipole interaction. The collision numbers for DCL
are nearly independent of temperature; however, those for HCl clearly decrease with
increasing temperature. The agreement between the ratios of the collision numbers
obtained from experiment and the theoretical ratio is satisfactory. (In contrast,
the ratios of the collision numbers calculated with the assumption that the reso-
nant correctidn is zero are all unity, clearly in disagreement with all current
theories on rotational relaxation.)

The final system of pure polar gases to be analyzed includes NHS’ ND and

NlSHS. Rotational relaxation collision numbers calculated from the experimental

)51

3’

data and resonant corrections calculated from Eq. (5 are given in Table VII.

The Zrot = 2,3 collisions obtained for NH3 at 300° X is much smaller than the

value of 9 collisions quoted by Herzfeld and Litovitz,32 but it is in agreement

(as it should be) with the value of 1.8 collisions obtained by Mason and Monchickt
by fitting thermal conductivity data. In addition, the NH5 value of 2.3 collisions

is consistent with the 4.0 collisions obtained for CH4 (see Table V); their masses
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and moments of inertia are similar but NH3 has a large dipole moment (which mskes
for a small Zrot)’ while methane is nonpolar. Agailn, Zrot shows a decrease
with increasing temperature, the dependence being much the same as that obtained
for HZO.Z The agreement between the ratios of the experimentally derived colli-
sion numbers and the theoretical ratio is comparable to that obtained for the
other two systems. Unlike the previous results, however, the agreement is better
at the lower temperatures than at the higher ones.

In summery, the data on the pure geses seem to support the conclusion reached
on the basis of the pure HZO and DZO results; that is, all in all, the data appear
to agree with the formula of Mason and Monchick for the thermal conductivity of
polyatomic gases [Eq. (2)] and with the correction to this expression necessary
for highly polar gases [Eq. (3)].

Equimolar Mixtures

In a recent paper2 on'HZO-DZO, we pointed out that Mason and Monchick's postu-
late regarding resonant exchange of rotational energy could be qualitatively tested
by comparing the thermal conductivity of two polar gas pairs with that of their
equimolar mixture. The resonant effect is based on a matching of rotational energy
levels. Consider, for example, an equimolar mixture of HCl and DCl. In such a
mixture, one-half the collisions are self-collisions of HCl and DCl in which reso-
nant exchange of rotational quanta may occur. The remaining collisions are be-
tween HC1 and DCl. Since the differences between rotational energy levels in DCL
are about half as large as the differences in HC1l, exchange is not possible, at
least for certain collisions. Consequently, such a mixture might be expected to
have a thermal conductivity somewhat greater than either of the pure constituents.

The thermel conductivities of the equimolar CH4-CD4 mixtures i1llustrate the

results that would be expected if no resonant effect were involved because CH4
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and CD4 are nonpolar. These results are presented in Table VIITI along with ther-
mal conductivities of the mixtures calculated assuming a linear mixing rule. (The
equations of Monchick, Pereira, and Mason® were used for a sample calculation at
300° X and agreed with this linear average to within one part in ten thousand.)
The experimental conductivities agree with the calculated values to within 2-3
parts per thousand. The experimental values are higher than the calculated values
at all temperatures; this suggests that the very slight positive deviation from a
linear mixing rule may be caused by a slightly smaller cross section for the un-
like interaction.

The next system for analysis and discussion is the equimolar HC1-DC1l mixture.
The experimental conductivities will be compared with values calculated using the
first-order linearized form of the equations of Monchick, Pereira, and Mason5 men-
tioned in the introduction. This form of their results can be regarded as equi-
valent to the Hirschfelder-Eucken formula for the thermal conductivity of poly-

atomic gas mixtures33

plus a large number of first-order correction terms.

In calculating the mixture conductivity it is necessary to know the value of
the resonant correction for the various interactions in order to compute the coef-
ficient of diffusion for internal energy [see Eq. (3)]. For the like interactions,
these corrections will be the same as for the pure gases; for the unlike inter-
actions the situation is more complicated. If the resonance effect actually re-
quires an exact matching of rotational energy differences, the correction for the
unlike interactions would be zero. There is recent evidence, however, that rota-
tional energy exchange does take place in HC1-DC1l collisions.>* That such an ex-
change is reasonable can be shown by the following arguments. The rotational en-
ergy of a diatomic molecule is given by

€ = J(J + l>erot/T’ (7)

rot
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~ where erot = h2/81t2kIrot and J 1is the rotational quantum number. Since rota-
tional transitions are generally restricted to those for which AJ = %1, the en-

ergy difference between rotational levels J and J+ 1 1is

erot
€n1 = € =(:7F—>2J. (8)

The ratio of the moment of inertia of DCl to that of HC1l is 1.9448 (see Table IV);

therefore, erot = B0t /1.9448. Thus, the rotational energy level differ-
DC1 HC1
ences for HC1l and DCLl in units of erot /T are as follows:
HC1
HC1 2 4 6
(J =1) (J =2) (J = 3) ete

DC1 1.028 2.057 3,085 4.114 5.142 6.170

(J =1) (J =2) (7 =3) (J = 4) (J = 5) (T =6) ete

It is evident that, as a consequence of the moment of inertia of DCl being nearly
twice that of HCl, near-resonant collisions are always possible for an HCl mole-

cule interacting with a DCl molecule, whereas for DCl interacting with HCl, near-
resonant collisions are possible for only half the energy levels. On this basis,

the following values for the resonant correction were assumed:

8yc1-po1 = Cuel-mew (9a)
and
Spo1-DClL
Sc1-mc1 =3 ¢ (9b)

The results of the mixture calculations are presented in Table IX and are
shown graphically in Fig. 2. The method referred to as "inelastic" uses the equa-
tions of Monchick, Pereira, and Mason.® The Hirschfelder-Eucken calculations,
which involve no inelastic effects, are also given in order to show the magnitude
of the first-order correction terms. In addition, both these calculations were

carried out with the assumption that there was no resonant exchange during unlike
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collisions (SHCl-DCl = SDCl-HCl = O), which would be the case if the rotational
exchange process actually required an exact resonance. The experimentally de-
termined conductivities are also listed in Table IX. The experimental points
plotted in Fig. 2 have an apparent smoothness of about five parts in ten thou-
sand.

It is quite clear that the conductivities obtained when no unlike interac-
tion is assumed are much too large; however, both methods give very satisfactory
agreement with experiment when unlike interaction is taken into account. In fact,
the conductivities obtained from the inelastic calculations agree with experiment
to within one part per thousand. Monchick, Pereira, and Mason5 concluded that
for most purposes the Hirschfelder-Eucken mixture formula is satisfactory for non-
polar gases or a mixture of a nonpolar and a polar gas provided that inelastic ef-
fects are included in calculetions for the pure components. It appears that their
conclusion also holds for a mixture of polar gases, at least for an equimolar
HC1-DC1 mixture. o0

The final system to be discussed is that of ammonia and its isotopically sub-
stituted counterparts. The thermal conductivity of equimolar NHS-ND5 was meas-
ured at 300° K (see Table ITI). The mixture conductivity was surprisingly low;
indeed, the conductivities of both pure NH3 and pure ND5 are greater than that of
the mixture. NH5 and ND3 exchange rapidly in a glass vessel even at room temper-

ature,56

which results in a four-component system: NHB’ NDS’ NHZD, and NHD2°
Part of the discrepancy in the mixture conductivity can be rationalized on the
basis of the lower heat capacities of NHZD and NHDZ.

Because of the complexity of the NHS-ND3 mixture, we decided to test the

exact resonance requirement using the equimolar NHS—N15H3 mixture instead. For

this mixture, the composition will remain constant despite any exchange reactions
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that might take place. From Table III, it is apparent that the mixture conduc-
tivity lies midway between that of the pure components. In fact, the weighted
average of the conductivities of the two components agrees with the mixture con-
ductivity to less than one part per thousand. In the light of the HC1-DCl results,
it seems quite clear that despite the lack of exact rotational energy level dif-
ferences (the moments of inertia differ by about 0.3 percent) rotational exchange
is occurring. Otherwise, the conductivity of the mixture would be considerably
larger (about 4 percent) than the average of the pure components.
CONCLUDING REMARKS

The experimental results are consistent with the notion that a resonant, or
near-resonant exchange of rotational quanta is important in determing the thermal
conductivity of polar gases. This is substantiated by measurements on the pure
compounds and also on HC1-DCl and N]AHS-N]'SH3 mixtures.

Results on NHS-ND5 and also HZO'DZO mixtures2 are complicated since exchange

reactions occu:r,4

and these are in fact multicomponent systems. Nonetheless, it
seems likely that these data can also be explained in terms of considerable near-
resonant exchange between unlike molecules and somewhat larger collision cross
sections for unsymmetric species such as NHZD, NHDZ, and HDO.
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The Spectroscopic constants necessary to calculate the heat capacities may
be found in the following references:
CHy: J. Herranz and B. P. Stoicheff, J. Mol. Spectroscopy 10,

448 (1963). R. S. McDowell, J. Chem. Phys. 39, 526 (1963).

R. S. McDowell and F. H. Kruse, see footnote a, Table IV.



25.

28,

27.

28.

29.

30.

31.
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CDy: H. M., Kaylor and A. H. Nielsen, see footnote b, Table IV;
R. S. Mc Dowell, J. Mol. Spectroscopy 3, 632 (1959).

HC1 and DC1l: D. H. Rank, D. P. Eastman, B. S. Rao, and T. A. Wiggins,
see footnote f, Table IV,

NH3 and NDS:

W. S. Benedict and E. K. Plyler, Can. J. Phys. 35, 1235 (1957).
H. M. Mould, W. C. Price, and G. R. Wilkinson, Sﬁectrochimica
Acta 15, 313 (1959).

E. K. Plyler and E. D. Tidwell, J. Chem. Phys. 29, 829 (1958).
G. Herzberg and L. Herzberg, Constants of Polyatomic Molecules,

Am. Inst. of Physics Handbook, 1957, D, E. Gray, ed.

B. J. McBride, S. Heimel, J. G. Ehlers, and S. Gordon, NASA Special Publication,

SP-3001 (1963).

L. Monchick and E. A, Mason, J. Chem. Phys. 35, 1676 (1961).

Ref. 10, p. 1176.

C. B. Baker and N. de Hass, Phys. Fluilds 7, 1400 (1964).

M. A. Breazeale and H. O. Kneser, J. Acoust. Soc. Am. 32, 885 (1960).
W. H. Andersen and D. F. Hornig, Mol. Phys. 2, 49 (1959).

The derivation of Eq. (5) involves, among other approximations, the replacement

of summations by integrations. In the case of ammonia, Mason and Monchick®
carried out the direct summation on a high-speed computer and found that the
analytic expression for the resonant correction gave values that were 5 per-
cent too large at 273° K and 0.9 percent too large at 573° K. Thus the ratio
of & [Eq. (5)] to &ldirect summation] as a function of temperature can be
determined from a plot of &[Eq. (5)]/8[summation] against hz/(8ﬂ2kIA)T.
This procedure was applied in computing the & values (shown in Table VII)

used in determining Zro from conductivity data.

t
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32. K. F. Herzfeld and T. A Litovitz, Absorption and Dispersion of Ultrasonic
Waves (Academic Press, Inc., New York, 1959), p. 241.

33. J. 0. Hirschfelder, Symp. Combust. 6th Yale Univ. 1956, 351 (1957); Proc,
Joint Conf. on Thermodynamic and Transport Properties of Fluids (Institution
of Mechanical Engineers, London, 1958), p. 133.

34. J. H, Jaffe, M. A. Hirschfeld, and A. Ben-Reuven, J. Chem. Phys. 40, 1705
(1964).

35. It should be mentioned that the HC1-DC1l system is actually a four—componeﬁt

35

system due to the existence of two chlorine isotopes, C1°° and C137.

However, the moments of inertia of HC1%®

and HC1®7, as well as DC155 ana pc1%7,
differ by only 2-3 parts per thousand. Since rotational exchange appears

to be possible between HC1-DCl, there is no doubt that it would occur

between HClSS-HC137, etc.

36. D. F. Stedman, J. Chem. Phys. 20, 718 (1951).



Table I. - Experimental electromotive force (emf)
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measurements relative to argon (mV).

Gas Temperature, °k
299.8 333.0 375.5 423.3 472.3
He 52,253 49.342 46.068  42.822 40.364
N2 17.700 16.671 15.552 14.359 13,583
CH, 28.009 27.657 27.392 27.003 26.692
CD4 28.878 28.941 28.911 28.550 28,154
0.52 CH,-0.48 CD 28.483 28.353 28.215 27.840 27.491
Gas Temperature, “K
300.0 329.1 374.6 424.2 474.5
He 55.796 03.174  46.331  43.097 40,313
N, 18.872 17.968 15.611 14.509 13,523
NH3 18, 437 19.548 19.607 20.584 21.173
ND3 18.286 19.755 20.119 21.276 21.938
0.5 NHz-0.5 NDg 17.857  ======  ececeeeo memceee —eeoen
NlSH3 17.398  e----- e-e--- 19.921  ------
0.52 NH,-0. 48 NlSH3 17.963  ==-ce= e-e---- 20.295  ------
Gas Temperature, K
300.1 328.5 374.8 423.1 471. 4
He 52.375 49,615  46.040  43.0768  40.504
N2 17.736 16.765 15.509  14.476 13.5863
HC1 -12.647 -11.010 -8.574 -6.304 -4,394
DC1 -12.968 -11.162 -8.564 -6.068 -3.963
0.5 HC1-0.5 DC1 -12.473 -10.749 -8.339 -6.008 -4.066




2l

Table II. - Thermal conductivities
of helium and argon assumed
for calibration purposes

(Heal em™t sec™d oK'l).

Temperature, Helium Argon
°k
299.8 370.7 42. 39
300.0 370, 9 42,42
300.1 371.0 42,43
328.5 394.5 45,50
329.1 395.0 45.55
333.0 398.2 45,99
374.6 432.0 50. 50
374.8 432.2 50.53
375.5 432.8 50.60
423.1 471, 4 55.52
423.3 471.6 55.54
424.2 472.3 55.62
471.4 508. 9 60.15
472.3 509. 5 60.23

474.5 511.2 60, 44
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Table IIT. - Experimental thermal conductivities

(neal em~l sec-1 og-1).

Gas Temperature, °k

299.8 333.0 375.5 423.3 472.3

CH4 80. 70 9l.21 106.55 125,17 144.48
CD4 83.03 95.57 113.51 134.86 156.47
0.52 CH4-O.48 CD4 81.96 93.52 110.21  130.23 150.80

N, 60.560 65. 59 72.10 78.87 85.65

Gas Temperature, °K

300.0 329.1  374.6 424.2 474,5

NH3 59.96 67.51 80. 64 96.13 112.58
ND3 59.76 67.86 81,91 98,54 118,20
0.5 NH3-0.5 ND3 59.19  =e=e= ceee- mmemm mmeaaa
leH 58.60  =e=== e-e-- 93;93 ------
3
0.52 NH3-0.48 NlSH3 59,33  mesmme meee- 95.16  -=~=----
N2 60.555 64.98 71.89 79.12 85.83
Gas Temperature, °x

300.1 328.5 374.8 423.1 471.4
HC1 34.95 38.03 43,39 49.17 54,90
DC1 34,80 37.95 43,40 49. 38 55. 37
0.5 HC1-0,5 DC1 35.04 38.18 43.56 49,34 55.286
N2 60.602 64.90 71.92 78.91 85. 35
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Table IV. - Molecular properties of test gases.

Gas | Moments of inertia, | Molecular | Dipole moment,?
2 40 , 18
g~cm X10 weight esu-cmx10
I, I, =1,
a —_
CH, 5, 3326 =1, | 16,0425 0
b
cD, 10. 7073 =1, | 20.0678 0
NE, C4. 4140 2.8087 | 17.0320 4y, 477
NlSH3 €4, 4140 2.8159| 18.0330 e1.4772
D, s, 7960 5.4129| 20.0500 41, 509
f

HCL | =-ee-e- 185, 6431 | 836. 4693 by 081

' h
DCL | e-em--- T5i5, 1404 837, 4763 1.085

®R. S. McDowell and F. H. Kruse, J. Chem. Eng. Data 8,
547 (1963).
H. M. Kaylor and A. H. Nielsen, J. Chem. Phys. 23,
2139 (1955).
CCalculated using computer program described in:
J. G. Ehlers and G. R. Cowgill, NASA TN D- 2085, 1964.
5. M. A. de Bruyne and C. P. Smyth, J. Am. Chem. Soc. 57,
1203 (1935).

eInterpolated from data for NH5 and ND3 on basis of the

b

reduced mass.
fD. H. Rank, D. P. Eastman, B. 5. Rao, and T. A. Wiggins,
J. Opt. Soc. Am. 52, 1 (1962).
gWeighted average of the molecular properties of HCl35
and HC1%7,
hR. P. Bell and I. E. Coop, Trans. Faraday Soc. 34,
1209 (1938).
iWeighted average of the molecular properties of DCl35

and D0137.
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Table V. - Data analysis for pure CH4 and CD4.

Temperature, %k
299.8 333.0 375.5 423,3 472.3
Viscosity of CH,, WP 112.5 123, 3 138.0 150.0 163. 6
(Cy,4/R) CH, 1.80134  1,96780  2.22166  2.54276  2.89179
CD, 2.39526  2,70998  3.12661  3.59446  4,06090
oDy 1/1(=6/5(A%)) 1.3190  1.3187 1.3184  1.3194  1.3207
Z .ot CH, 4.0 3.6 3.8 3.6 3.0
CD, 3.4 2.8 2.7 2.4 2.0
Zrot, (CD, )
——— 0.86 0.79 0.71 0.67 0.66
Zrot, (CH,)
Zrot,(CD4)
> : 0.65 0.65 0.865 0.65 0.65
rot, (CHy,)
Calc,Eq.(6)
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Table VI, - Data analysis for pure HC1l and DC1.

Viscosity of HCl, WP

(Cypt/R) HC1

DC1

| eD11/n(=8/5(A%))

Z HC1

rot
DC1

Zrot, (DC1)

Zrot, (HC1)

Zrot, (DCL)
7

rot, (HC1) Calc,Eq.(6)
5 HC1

DC1

Temperature, °K

300.1 328.5 374.8 423.1 471.4
146.4 160.7 183.8 207.3 229.0
1.00430 1.00501 1.00704 1.0111e 1.01834
1.00859 1.01346 1.02658 1.04799 1.07709
1.3254 1.3243 1.3232 1.3214 1.3190
6.2 4.6 3.6 3.2 3.0
2.6 2.3 2.0 1.9 1.9
0.43 0.50 0.56 0.60 0.62
0.54 0.54 0.54 0.54 0.54
0.48 0.42 0.34 0.28 0.24
0.18 0.16 0.13 0.10 0.09




Table VII, - Data analysis for pure NHS’ NlSH3 and ND

26

3

Viscosity of NH3, upP

(Cint/R) NH

3
D5

N15

oD 1/n(=6/5(A%))

He

NH

Zrot 3

ND 4

15
Zrot,(NDS)

“rot, (NH,)

Zrot,(NDS)

%rot, (NHs)

Calc,Eq.(8)

o} NH

Temperature, %k

300.0 329.1 374.6 424.2 474.5

101. 53 112.2 129.0 147.2 165.8
1.78007  1.87133  2,02926  2.21460  2.40886
2.10154  2.25252  2.49342  2.75482  3.01423
1.778205 =emmem=  mmme--- 2.21792  —me-e--
1.3202 1.3218 1.3241 1. 3254 1.3243
2.3 2.1 1.9 1.7 1.8
1.6 1.5 1.3 1.3 1.2
2.5 -——— -—— 1.8 -——
0.69 0.70 0.72 0.74 0.77
0.64 0.64 0.64 0.64 0.64
0.15 0.12 0.09 0.07 0.06
0.05 0.04 0.03 0.02 0.02
0.15 ——— ———- 0.07 —-
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Teble VIII. - Comparison of the experimental CH4-CD4 mixture
thermal conductivities with those calculated using the

linear mixing rule (pcal em™t sec™t OK'l).

Temperature, k
299.8 333.0 375.5 423.3 472.3

0.52 CH4-O.48 CD4, 81.96 93. 52 110.21 130.23 150.80

(exptl)
0.52 CH4-O,48 CDy, 831,82 = 93.32 109.91 129.85 150.27

(cale,mixing rule)
X,(expt%}// 1.0017 1.0022 1.0027 1.0029 1.0035

A, (cale)

& The pure gas conductivities are given in Table III.




»

28

Table IX. - Comparison of experimental and calculated values for thermal

conductivity of equimolar HC1-DCl mixtures (ucal em L gee™l oK'l).

Method Temperature, °K

300.1 328.5 374.8 423.1 471.4
Inelastic, unlike intersction 35.08 38.21 43.62 49.49 55.35
Inelastic, no unlike interaction 36.35 39.59 45.09 50,99 56.80
Hirschfelder-Eucken, unlike interaction 34,98 38,09 43.48 49.36 55.22
Hirschfelder-Eucken, no unlike interaction | 35.58 38.64 44.01 49.88 55.75

7\e>cp1:lI_ICl * 7“expt,lml

Iinear mixing rule > 24,87 37.99 43,39 49.28 55.13
Experimental 35,04 38,18 43.58 49,43 55.26
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